RESEARCHES ON IMIDAZOLES

XXV. Some S-Substituted 1-Alkyl- and 1, 2-Dialkyl-4-Nitro-5-mercaptoimidazoles*

P. M. Kochergin and E. A. Bashkir

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 5, pp. 762-765, 1966

A study is made of the reaction of the sodium and ammonium salts of 1-alkyl- and 1, 2-dialkyl-4-nitro-5 mercaptoimidazoles with α -halogenoketones, α -halogenoalcohols, and α - and β -halogeno acids, to give a number of 1-alkyl- and 1, 2-dialkyl-4-nitro-5- [β -ketoalkyl (aralkyl)-, α -hydroxyethyl-, and α - and β -carboxyalkyl] mercaptoimidazoles.

Previously a study was made of the reaction between 2-mercaptoimidazoles and α -halogenocarbonyl and α -halogenocarboxyl compounds [1, 2]. The action of α -halogenoketones, β -halogenoalcohols, and α - and β -halogeno acids on 4(5)-nitro-5(4)-mercaptoimidazoles has never been investigated. The preparation of some (3 in all) 4(5)-nitro-5(4)-carboxymethylmercaptoimidazoles by treatment of 4(5)-nitro-5(4)-chloro (bromo)imidazoles with thioglycolic acid has been described [3].

We have now synthesized a number of 1-alkyl- and 1,2-dialkyl-4-nitro-5- [β -ketoalkyl (aralkyl)-, β -hydroxy-ethyl- and α - and β -carboxyalkyl mercaptoimidazoles (I-XV, table), as well as of 1-methyl-5-nitro-4-carboxy-methylmercaptoimidazoles (XVI), which was prepared by a method other than that described in the literature [3]. These compounds were of interest from the point of view of biological testing, and as starting materials for synthesizing some bicyclic derivatives of imidazole.

Heating the sodium salts of 1-alkyl- and 1,2-dialkyl-4-nitro-5-mercaptoimidazoles [4-6] with α -halogenoketones of the aliphatic, alicyclic, and aliphatic-aromatic series, in aqueous ethanolic solution gives good yields of the corresponding 4-mitro-5- β -ketoalkyl (aralkyl)-mercaptoimidazoles (I-IX). Reaction of the sodium salt of 1-methyl-4-nitro-5-mercaptoimidazole [4-6], and of the ammonium salts of 1-ethyl-2-methyl-4-nitro-5-mercapto- and 1-propyl-2-ethyl-4-nitro-5-mercaptoimidazole [5] with ethylene bromohydrin in water, gives 4-nitro-5-(β -hydroxyethyl) mercaptoimidazoles (X-XII).

$$\begin{array}{c|c} NaS & CH_2R & R \vdash S & CH_2R \\ \hline \\ O_2N & O_2N & O_2N & I - XV \end{array}$$

1-Alkyl- and 1,2-dialkyl-4-nitro-5-carboxyalkylmercaptoimidazoles (XIII-XV) were synthesized by heating the sodium salts of 1-alkyl- and 1,2-dialkyl-4-nitro-5-mercaptoimidazoles with the sodium salts of bromoacetic, α -bromoisovaleric, and β -bromopropionic acids in aqueous solution, followed by acidification with hydrochloric acid. 1-Methyl-5-nitro-4-carboxymethylmercaptoimidazole (XVI) was prepared similarly, with this difference, that the synthesis was effected starting from 1-methyl-4-chloro-5-nitroimidazole [7], without isolating 1-methyl-5-nitro-4-mercaptoimidazole or its sodium salt.

$$\begin{array}{c|c}
O_2N & CH_3 \\
Na_2S & Na_2S \\
Na_3S & Na_2S \\
Na_3S & CH_3
\end{array}$$

$$\begin{array}{c|c}
CICH_2COONa, & O_2N & CH_3 \\
\hline
then HCI & HOOCCH_2S & XVI
\end{array}$$

The biological testing of the compounds for antibacterial action (spectrum for 16 kinds of microbes) was done in the chemotherapy division of VNIKhFI (All-Union Scientific Research Chemical and Pharmaceutical Institute) by S. N. Milovanova and A. L. Mikerina, under the guidance of G. N. Pershin, and showed that they were chemotherapeutically

^{*}For Part XXIV see [6].

1-RCH₂-2-R-5-R'S-4-nitroimidazoles

Compound						Found,	d, %			Calculated, %	ited, 9		Yield,
number	¥	×	Mp, C	Formula	ပ	H	z	s	c	Ξ	z	s	%
-	Ξ	CH ₂ COCH ₃ *	143.5—144	S,O,N,H,	30.04	3 03	20.13	14 84	30.06	4 91	0101	9	ע ע
		4		000000000000000000000000000000000000000	2000	2,0		10,1	03.00		15.02	60,11	0.00
11	H	CH ₃ COCH (CH ₃)	104—105	$C_8H_{11}N_3O_3S$	41.82	4.72	18.46	14,24	41.92	4.83	18.33	13.99	82,8
Ш	I	C ₆ H ₉ O**	182—183	$C_{10}H_{13}N_3O_3S$	47.28	5.20	16.66	12.70	47.05	5.13	16.49	12.52	78.4
N N	Н	C ₆ H ₅ COCH ₂	140—141	C ₁₂ H ₁₁ N ₃ O ₃ S	51.76	3.92	15.16	11.76	51.97	4.00	15.15	11.56	66
>	H	m-O ₂ NC ₆ H ₄ COCH ₂	146—148	C ₁₂ H ₁₀ N ₄ O ₅ S	44.55	3.03	17.59	10.11 44.72	44.72	3.13	17.38	9.95	96.2
VI	н	p-O ₂ NC ₆ H ₄ COCH ₂	183—184	$C_{12}H_{10}N_4O_5S$	45.00	3,45	17.22	9.72	9.72 44.72	3.13	17.38	9.95	95
VIII	CH3	CH3COCH(CH3)	77—79	CloH15N3O3S	46.96	5.77	16.23	12.13	46.68	5.87	16.33	12.46	67.3
VIII	n-C ₃ H ₇	CH3COCH2	72—73	$C_{13}H_{21}N_3O_3S$	51.93	7.06	13.75	10.62	52.15	7.07	14.03	10.71	66
IX	n-C ₃ H _{7.}	p-BrC ₆ H ₄ COCH ₂	66—86	C ₁₈ H ₂₂ BrN ₃ O ₃ S***	49.05	5,16	9.45	6.97	49.09	5.04	9.54	7.28	82
×	Щ	HOCH2CH2	1110—1111	$C_6H_9N_3O_3S$	35.61	4.60	20.65	15.74	35.46	4.46	20.68	15.78	2'98
1X	CH3	HOCH2CH2	92—93	$C_8H_{13}N_8O_3S$	41.43	5.50	18.46	14.06	41,54	5.67	18.17	13.86	62.2
XII	C_2H_5	HOCH2CH2	8788	$C_{10}H_{17}N_3O_3S$	46.11	6.44	16.55	11.91	46,51	19'9	16.21	12.36	68,4
XIII	Н	нооссн ₂	208209***	$C_6H_7N_3O_4S$									2.08
XIV	CH3	(CH ₃) ₂ CHCH(COOH)	172.5—173	C ₁₁ H ₁₇ N ₃ O ₄ S	45.75	6.13	14.70	11.58 45.98	45.98	5.96	14.62 11.16	11.16	84.3
XV	C ₂ H ₅	HOOCCH ₂ CH ₂	148148.5	$C_{11}H_{17}N_3O_4S$	45.60	6.13	45.60 6,13 14.69 11.14 45.98	11.14	45.98	5.96	5.96 14.62 11.16	11.16	6.88

* For analysis the compounds were purified by recrystallization: I, III, IV, ex EtOH; II, VIII, VIII, XIV, XV ex aqueous EtOH; V ex dioxane; VI ex glacial AcOH; IX ex isoPrOH; X, XI, XIII ex H2O; XII ex EtOAc.

^{**2-}Oxocyclohexyl. ***Found: Br 17, 76%. Calculated Br 18, 15%.

^{****} The literature [3] gives mp 209° -210°.

Experimental

Synthesis of the sodium and ammonium salts of 1-alkyl- and 1, 2-dialkyl-4-nitro-5-mercaptoimidazoles was previously described [4-6].

1-Alkyl- and 1,2-dialkyl-4-nitro-5- θ -ketoalkyl (aralkyl) mercaptoimidazoles (I-IX, Table). 0.33 mole of the halogenoketone (chloroacetone, α -chloroethylmethylketone, 2-chlorocyclohexanone) was added to a solution of 0.03 mole Na salt of 1-alkyl- or 1,2-dialkyl-4-nitro-5-mercaptoimidazole in 15-20 ml water, and the mixture heated for 1-2 hr at 60°-90° C, when the bright orange color of the solution changed to pale-yellow, and a precipitate rapidly formed. The products were then cooled, the precipitate filtered off, washed with water, and I-III, VII, VIII thus obtained. Compounds IV-VI, IX, were synthesized similarly, but with the difference that theoretical quantities of the halogeno-ketones (phenacylbromide or its nitro (bromo) derivatives) were used, and the reaction was run in 70% EtOH (20 ml per 1 g phenacylbromide). I-IX formed yellow or pale-yellow crystals, readily soluble in most organic solvents, slightly soluble in water, ether, CCl₄, and petrol ether, V and VI were slightly soluble in organic solvents, insoluble in water.

1-Alkyl- and 1,2-dialkyl-4-nitro-5-(β -hydroxyethyl) mercaptoimidazoles (X-XII). 0.0044 mole ethylene bromohydrin was added to a solution of 0.004 mole ammonium salt of 1,2-dialkyl-4-nitro-5-mercaptoimidazole in 3-4 ml water, the mixture heated at 95°-98° for 1-2 hr, and after cooling the oil which separated crystallized. The solid was filtered off and washed with water. This procedure was used to synthesize XI and XII. The sulfide X was prepared similarly, the difference being that the sodium salt of 1-methyl-4-nitro-5-mercaptoimidazole was used. Pale-yellow crystals, soluble in most organic solvents, and in hot water.

1-Alkyl- and 1 2-dialkyl-4 nitro-5-carboxyalkylmercaptoimidazoles (XIII-XV). A solution of Na salt of the halogeno acid (bromoacetic, α -bromoisovaleric, β -bromopropionic), prepared from 0.011 mole halogeno acid, 0.011 mole NaOH, and 10 ml water, was added to a solution of 0.01 mole Na salt of 1-alkyl- or 1,2-dialkyl-4-nitro-5-mercaptoimidazole in 10 ml water, the mixture refluxed for 4-8 hr, the solution cooled, acidified to pH 2-3 with concentrated HCl, the precipitate filtered off, and washed with water. Pale-yellow crystals, soluble in most organic solvents, slightly soluble in hot water.

1-Methyl-5-nitro-4-carboxymethylmercaptoimidazole (XVI) and its ammonium (XVII) and sodium (XVIII) salts.
a) The acid XVI and its salt XVII were prepared as described in [3], with the difference that the reaction mixture of 1-methyl-4-chloro-5-nitroimidazole [7], thioglycolic acid, and NH₄ OH were kept at 0°-3° for 48 hr, the precipitate of salt XVII filtered off, washed with a small amount of EtOH and then with acetone, yield 88.5%, mp 187.5°-188° (decomp, ex H₂O). The literature gives [3] mp 185°. Decomposition of salt XVII with HCl gave the acid XVI, mp 163°-164° (ex EtOH). The literature gives [3] mp 163°-164°.

b) 0.01 mole 1-methyl-4-chloro-5-nitroimidazole was added to a solution of 0.01 mole $Na_2S \cdot 9H_2O$ in 15 ml EtOH, and this was followed by 0.011 Na chloroacetate in 5 ml water, the mixture was then left overnight. The yellow precipitate of the Na salt XVIII was filtered off, and washed with acetone. Yield 61.2%, mp 257°-260° (decomp, ex 50% aqueous EtOH). The salt was readily soluble in water, slightly soluble in EtOH, insoluble in acetone. Found: N 17.50; S 13.63%. Calculated for $C_6H_6N_3O_4SNa$: N 17.64; S 13.46%.

Acidification of an aqueous solution of salt XVIII with HCl led to isolation of the acid XVI, mp 163°-165°, identical with that obtained by procedure a) above.

REF ERENCES

- 1. P. M. Kochergin and M. N. Shchukina, ZhOKh, 26, 458, 2905, 1956.
- 2. P. M. Kochergin, ZhOKh, 31, 184, 3257, 1961.
- 3. M. H. Fisher, W. H. Hicholson, and R. S. Stuart, Can. J. Chem., 39, 785, 1961.
- 4. P. M. Kochergin, Author's Certificate, no. 158280.
- 5. P. M. Kochergin, KhGS [Chemistry of Heterocyclic Compounds], 749, 1966.
- 6. P. M. Kochergin and E. A Bashkir, KhGS [Chemistry of Heterocyclic Compounds], 754, 1966.
- 7. P M Kochergin, KhGS [Chemistry of Heterocyclic Compounds], 761, 1965.

22 February 1965

Ordzhonikidze All-Union Scientific Research Chemical and Pharmaceutical Institute